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Abstract 

This article presents an efficient numerical approach to solving Maxwell’s equations using even order geometric 

methods with splines. The method employs explicit time-stepping techniques to achieve fast solutions, suitable 

for large-scale simulations of electromagnetic phenomena. The approach is validated with examples, 

demonstrating its effectiveness and efficiency. 
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1. Introduction 

Maxwell’s equations govern the behavior of electromagnetic fields and are fundamental to many applications in 

science and engineering, such as telecommunications, medical imaging, and radar systems. Traditional 

numerical methods for solving these equations can be computationally intensive, especially for high-resolution 

simulations. This work explores the use of even order geometric methods with splines to enhance the 

computational efficiency and accuracy of these simulations. 

Maxwell’s equations in the time domain are given by:  

 

 (1) 

 

 (2) 

 

where E is the electric field, B is the magnetic field, J is the current density,  is the speed of light, and  is the 

permittivity of free space [1]. 

 

2. Geometric Methods with Splines 

Geometric methods leverage the underlying structure of Maxwell’s equations, preserving important properties 

such as divergence and curl. By employing spline functions, we can achieve high-order accuracy in spatial 

discretization while maintaining geometric fidelity. 

Splines, particularly B-splines, offer several advantages:  

 

Smoothness and continuity at element boundaries: Splines ensure that the solution is smooth across the entire 

computational domain [2].  

 

Flexibility in handling complex geometries: The local support of splines makes it easier to adapt the mesh to 

complex boundaries.  

 

Efficient implementation through compact support: The localized nature of splines reduces the 

computational complexity.  

 

2.1 B-Splines 

B-splines are piecewise polynomial functions that provide a powerful tool for interpolation and approximation. 

They are defined recursively, offering a versatile framework for constructing smooth curves and surfaces. 

Consider a set of control points Pi and a knot vector ti, the B-spline basis functions Ni,k (t) are defined as:  
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 (3) 

 (4) 

 

These basis functions can be used to construct the spline curve:  

 

 (5) 

 

3. Even Order Methods 

Even order methods are advantageous for their symmetry properties, leading to improved stability and accuracy 

in numerical simulations. We focus on methods of order 2, 4, and 6, which provide a good balance between 

computational cost and accuracy. 

 

3.1 Second Order Methods 

Second order methods, such as the central difference method, are simple and provide reasonable accuracy for 

many applications. The central difference method for the second derivative is given by:  

 

  (6) 

 

 where  is the grid spacing. 

 

3.2 Fourth Order Methods 

Fourth order methods improve accuracy by incorporating additional neighboring points into the finite difference 

stencil. The fourth order central difference method for the second derivative is given by:  

 

  (7) 

 

3.3 Sixth Order Methods 

Sixth order methods further enhance accuracy, making them suitable for simulations where the highest possible 

precision is necessary. The sixth order central difference method for the second derivative is given by:  

 

 (8) 

 

4. Explicit Time-Stepping 

Explicit time-stepping schemes are used to advance the solution in time. These schemes are straightforward to 

implement and can be highly efficient for problems where the time step is not severely restricted by stability 

considerations. We employ the leapfrog method, a second-order explicit scheme, due to its simplicity and 

effectiveness in handling wave propagation problems. 

 

4.1 Leapfrog Method 

The leapfrog method updates the electric and magnetic fields in a staggered manner, providing a time-centered 

scheme that is second-order accurate in time. The update equations for the electric and magnetic fields are given 

by:  

 

 (9) 

 

 (10) 

 

where  is the time step size [3]. 

 

5 Application to Maxwell’s Equations 

Using even order geometric methods with splines, we discretize the spatial domain and apply the explicit 

leapfrog time-stepping scheme to update the fields. The discretization ensures that the divergence-free condition 

for B is preserved, enhancing the physical accuracy of the solution. 
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6 Examples 

6.1 Example 1: Wave Propagation in Free Space 

Consider an electromagnetic wave propagating in free space. The initial conditions are given by a Gaussian pulse 

in the electric field:  

 

 (11) 

 

  (12) 

 

Using the described method, we can simulate the propagation of this pulse. The results show that the method 

accurately captures the wave dynamics with minimal dispersion and numerical artifacts. 

 

 
 

Fig 1: Propagation of a Gaussian pulse in free space. 
 

6.2 Example 2: Scattering from a Perfect Electric Conductor (PEC) 

We simulate the scattering of an electromagnetic wave from a PEC cylinder. The incident wave is a plane wave 

polarized in the -direction:  

 

  (13) 

 

  (14) 

 

The boundary conditions on the PEC surface enforce that the tangential component of the electric field is zero. 

The numerical results show the scattered field distribution, illustrating the method’s ability to handle complex 

boundary conditions. 

 

 
 

Fig 2: Scattering from a PEC cylinder. 
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7 Numerical Results 

We validate the proposed method through several benchmark problems, demonstrating its accuracy and 

efficiency. The results show that even order geometric methods with splines can achieve high-resolution 

solutions with reduced computational effort compared to traditional methods. 

 

7.1 Benchmark Problem: Waveguide Mode Analysis 

We analyze the modes of a rectangular waveguide using the proposed method. The numerical results are 

compared with analytical solutions, showing excellent agreement and demonstrating the method’s accuracy. 

 

 
 

Fig 3: Electric field distribution for the fundamental mode in a rectangular waveguide. 
 

8. Conclusion 

The combination of even order geometric methods with splines and explicit time-stepping schemes provides a 

powerful tool for solving Maxwell’s equations. This approach is particularly suitable for large-scale simulations 

where computational efficiency is paramount. Future work will explore the extension of these methods to more 

complex geometries and boundary conditions. 
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